Dark Datter

in #universe6 years ago

The Universe is composed almost completely of dark energy, dark matter, and ordinary matter. Other contents are electromagnetic radiation (estimated to constitute from 0.005% to close to 0.01% of the total mass of the Universe) and antimatter.

The proportions of all types of matter and energy have changed over the history of the Universe. The total amount of electromagnetic radiation generated within the universe has decreased by 1/2 in the past 2 billion years. Today, ordinary matter, which includes atoms, stars, galaxies, and life, accounts for only 4.9% of the contents of the Universe.[8] The present overall density of this type of matter is very low, roughly 4.5 × 10−31 grams per cubic centimetre, corresponding to a density of the order of only one proton for every four cubic meters of volume. The nature of both dark energy and dark matter is unknown. Dark matter, a mysterious form of matter that has not yet been identified, accounts for 26.8% of the cosmic contents. Dark energy, which is the energy of empty space and is causing the expansion of the Universe to accelerate, accounts for the remaining 68.3% of the contents.The formation of clusters and large-scale filaments in the cold dark matter model with dark energy. The frames show the evolution of structures in a 43 million parsecs (or 140 million light years) box from redshift of 30 to the present epoch (upper left z=30 to lower right z=0).
A map of the superclusters and voids nearest to Earth

Matter, dark matter, and dark energy are distributed homogeneously throughout the Universe over length scales longer than 300 million light-years or so. However, over shorter length-scales, matter tends to clump hierarchically; many atoms are condensed into stars, most stars into galaxies, most galaxies into clusters, superclusters and, finally, large-scale galactic filaments. The observable Universe contains approximately 300 sextillion (3×1023) stars and more than 100 billion (1011) galaxies.[84] Typical galaxies range from dwarfs with as few as ten million[85] (107) stars up to giants with one trillion(1012) stars. Between the larger structures are voids, which are typically 10–150 Mpc (33 million–490 million ly) in diameter. The Milky Way is in the Local Group of galaxies, which in turn is in the Laniakea Supercluster. This supercluster spans over 500 million light years, while the Local Group spans over 10 million light years. The Universe also has vast regions of relative emptiness; the largest known void measures 1.8 billion ly (550 Mpc) across.
Comparison of the contents of the Universe today to 380,000 years after the Big Bang as measured with 5 year WMAP data (from 2008).[90] (Due to rounding errors, the sum of these numbers is not 100%). This reflects the 2008 limits of WMAP's ability to define dark matter and dark energy.

The observable Universe is isotropic on scales significantly larger than superclusters, meaning that the statistical properties of the Universe are the same in all directions as observed from Earth. The Universe is bathed in highly isotropic microwave radiation that corresponds to a thermal equilibrium blackbody spectrum of roughly 2.72548 kelvin. The hypothesis that the large-scale Universe is homogeneous and isotropic is known as the cosmological principle. A Universe that is both homogeneous and isotropic looks the same from all vantage points and has no center.

Dark energy...
An explanation for why the expansion of the Universe is accelerating remains elusive. It is often attributed to "dark energy", an unknown form of energy that is hypothesized to permeate space. On a mass–energy equivalence basis, the density of dark energy (~ 7 × 10−30 g/cm3) is much less than the density of ordinary matter or dark matter within galaxies. However, in the present dark-energy era, it dominates the mass–energy of the universe because it is uniform across space.

Two proposed forms for dark energy are the cosmological constant, a constant energy density filling space homogeneously, and scalar fields such as quintessence or moduli, dynamic quantities whose energy density can vary in time and space. Contributions from scalar fields that are constant in space are usually also included in the cosmological constant. The cosmological constant can be formulated to be equivalent to vacuum energy. Scalar fields having only a slight amount of spatial inhomogeneity would be difficult to distinguish from a cosmological constant.
Dark matter
Main article: Dark matter

Dark matter is a hypothetical kind of matter that is invisible to the entire electromagnetic spectrum, but which accounts for most of the matter in the Universe. The existence and properties of dark matter are inferred from its gravitational effects on visible matter, radiation, and the large-scale structure of the Universe. Other than neutrinos, a form of hot dark matter, dark matter has not been detected directly, making it one of the greatest mysteries in modern astrophysics. Dark matter neither emits nor absorbs light or any other electromagnetic radiation at any significant level. Dark matter is estimated to constitute 26.8% of the total mass–energy and 84.5% of the total matter in the Universe.

Ordinary Matter...
The remaining 4.9% of the mass–energy of the Universe is ordinary matter, that is, atoms, ions, electrons and the objects they form. This matter includes stars, which produce nearly all of the light we see from galaxies, as well as interstellar gas in the interstellar and intergalactic media, planets, and all the objects from everyday life that we can bump into, touch or squeeze. As a matter of fact, the great majority of ordinary matter in the universe is unseen, since visible stars and gas inside galaxies and clusters account for less than 10 per cent of the ordinary matter contribution to the mass-energy density of the universe.

Ordinary matter commonly exists in four states (or phases): solid, liquid, gas, and plasma. However, advances in experimental techniques have revealed other previously theoretical phases, such as Bose–Einstein condensates and fermionic condensates.

Ordinary matter is composed of two types of elementary particles: quarks and leptons. For example, the proton is formed of two up quarks and one down quark; the neutron is formed of two down quarks and one up quark; and the electron is a kind of lepton. An atom consists of an atomic nucleus, made up of protons and neutrons, and electrons that orbit the nucleus. Because most of the mass of an atom is concentrated in its nucleus, which is made up of baryons, astronomers often use the term baryonic matter to describe ordinary matter, although a small fraction of this "baryonic matter" is electrons.

Soon after the Big Bang, primordial protons and neutrons formed from the quark–gluon plasma of the early Universe as it cooled below two trillion degrees. A few minutes later, in a process known as Big Bang nucleosynthesis, nuclei formed from the primordial protons and neutrons. This nucleosynthesis formed lighter elements, those with small atomic numbers up to lithium and beryllium, but the abundance of heavier elements dropped off sharply with increasing atomic number. Some boron may have been formed at this time, but the next heavier element, carbon, was not formed in significant amounts. Big Bang nucleosynthesis shut down after about 20 minutes due to the rapid drop in temperature and density of the expanding Universe. Subsequent formation of heavier elements resulted from stellar nucleosynthesis and supernova nucleosynthesis.

Sort:  

Congratulations @indian.dtuber! You have completed the following achievement on Steemit and have been rewarded with new badge(s) :

Award for the number of posts published

Click on the badge to view your Board of Honor.
If you no longer want to receive notifications, reply to this comment with the word STOP

Do not miss the last post from @steemitboard:
SteemitBoard World Cup Contest - France vs Belgium


Participate in the SteemitBoard World Cup Contest!
Collect World Cup badges and win free SBD
Support the Gold Sponsors of the contest: @good-karma and @lukestokes


Do you like SteemitBoard's project? Then Vote for its witness and get one more award!

Coin Marketplace

STEEM 0.24
TRX 0.11
JST 0.031
BTC 61122.11
ETH 2972.46
USDT 1.00
SBD 3.66